Synthesis and Crystal Structure of 9,12-Bis-(4-acetylphenyl)-1,2-dicarbadodecaborane(12): Self-Assembly Involving Intermolecular Carboranyl C-H Hydrogen Bonding

George Harakas, Tuan Vu, Carolyn B. Knobler, and M. F. Hawthorne*

Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California 90095

Received January 30, 1998

The rigid three-dimensional nature of the isomeric icosahedral carborane ($C_2B_{10}H_{12}$) cages, 1,2 (ortho), 1,7 (meta), and 1,12 (para), accompanied by the versatile chemistry observed at both the carborane \hat{C} -H and B-H vertices¹⁻³ makes their derivatives attractive candidates for crystal engineering.⁴ The syntheses of molecules containing modular carborane subunits, which may prove useful in this quest, have been reported by this laboratory as well as others.⁵⁻⁸ It has been demonstrated that orthocarborane forms host-guest complexes with cyclodextrins⁹ and cyclotriveratrylene.¹⁰ Furthermore, Wade has recently demonstrated that ortho-carborane forms a well-ordered 1:1 adduct with hexamethylphosphoramide (HMPA).11 Similarly, the deca-Bchloro-ortho-carborane dimethyl sulfoxide (DMSO) adduct has been shown to exhibit strong hydrogen bond interactions in the solid state.¹² The characteristic common to these host-guest complexes and solvent adducts is the pivotal role of hydrogen bonding provided via the carborane's C-H vertices, which defines the organization of the complex in the solid state. We now report the synthesis and solid-state structure of a novel orthocarborane derivative, 9,12-bis-(4-acetylphenyl)-1,2-carborane) (1, see Figure 1)¹³ which provides the first example of a carborane system involving intermolecular hydrogen bonding in which the functional group interacting with the carborane C-H is connected to the carborane cage.

Functionalization of *ortho*-carborane at the 9- and 12-boron can be readily achieved by iodination at the 9,12-vertices followed by reaction with the appropriate Grignard reagent,^{14,15} in the present instance the Grignard derived from 4-bromoacetophenone ethylene ketal. Colorless crystals of **1** were grown from acetone solution by slow evaporation of the solvent. The structure of **1** was confirmed by an X-ray crystal analysis, which also revealed an interesting intermolecular phenomenon.¹⁶ Each carboranyl C–H is within close proximity of a carbonyl oxygen atom extended from another molecule. However, it is apparent from the differing C–H–O bond distances C(1)•••O(11) 3.015(7) Å

- (6) Yang, X.; Jiang, W.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. **1992**, 114, 9719–9721.
- (7) Chizhevsky, I. T.; Johnson, S. E.; Knobler, C. B.; Gomez, F. A.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1993**, *115*, 6981–6982.
- (8) Yang, X.; Knobler, C. B.; Zheng, Z.; Hawthorne, M. F. J. Am. Chem. Soc. **1994**, *116*, 7142–7159.
- (9) Harada, A.; Takahashi, S. J. Chem. Soc., Chem. Commun. **1988**, 1352–1353.
- (10) Blanch, R. J.; Williams, M.; Fallon, G. D.; Gardiner, M. G.; Kaddour, R.; Raston, C. L. *Angew. Chem.* **1997**, *36*, 504.
- (11) Davidson, M. G.; Hibbert, T. G.; Howard, J. A. K.; Mackinnon, A.; Wade, K. J. Chem. Soc., Chem. Commun. **1996**, 2285–2286.
- (12) Yanovsky, A. L.; Struchkov, Y. T.; Vinogradova, L. E.; Leites, L. A. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1982**, 2257.

Figure 1. Crystal packing diagram of **1**. Selected distances (Å) and angles (°): $C(1)\cdots H(1) = 0.98(4)$, $H(1)\cdots (O11) = 2.17(4)$, $C(2)\cdots H(2) = 1.02(4)$, $H(2)\cdots O(5) = 2.36(4)$; $C(1)-H(1)\cdots O(11) = 146(3)$, $C(2)-H(2)\cdots O(5) = 160(3)$. The remaining phenyl and carborane hydrogen atoms are not shown for clarity.

and C(2)···O(5) 3.335(8) Å that only the hydrogen at C(1) is significantly interacting with a carbonyl oxygen attached to another molecule. Atom O(5) is the carbonyl oxygen of a molecule related by a center of symmetry at x = 1/2, y = 0, z = 1/2, and O(11) is the carbonyl oxygen of a molecule related by a translation along the *a* axis (see Figure 1). This distance of 3.015(7) for C(1)···O(11) is significantly shorter than the corresponding values of 3.130(5) and 3.179(6) in the HMPA-*ortho*carborane dimer reported by Wade.¹¹ The solid-state infrared spectrum of **1** exhibits two stretching frequencies for carborane C-H (3070 and 3044 cm⁻¹; 1,2 carborane 3071 cm⁻¹). This observation of two stretching modes and the shift to lower

⁽¹⁾ Grimes, R. N. Carboranes; Academic Press: New York, 1970.

⁽²⁾ Bregadze, V. I. Chem. Rev. 1992, 92, 209-223.

⁽³⁾ Jiang, W.; Knobler, C. B.; Mortimer, M. D.; Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1995, 34, 1332–1334.

 ⁽⁴⁾ Desiraju, G. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2311–2327.
 (5) Muller, J.; Base, K.; Magnera, T. F.; Michl, J. J. Am. Chem. Soc. 1992, 114, 9721–9722.

⁽¹³⁾ All manipulations were carried out under anaerobic and anhydrous conditions unless otherwise stated. The 4-bromoacetophenone was purchased from the Aldrich Chemical Co. and converted to the ethylene ketal using azeotropic distillation with ethylene glycol/benzene in a Dean-Stark apparatus. A solution of the Grignard was prepared by adding the bromoketal (15.7 g, 64.6 mmol) to Mg (2.20 g, 90.5 mmol) in THF (300 mL) over the course of 2 h. The solution was then stirred overnight at 25 °C. The acidic carborane were removed prior to the coupling reaction with CH_3MgBr . To a THF (200 mL) solution of 9,12- I_2 -1,2- $C_2B_{10}H_{10}$ (8.50, 21.5 mmol) was added 13.5 mL of CH_3MgBr (3.0 M, in diethyl ether). The evolution of methane ceased after \sim 15 min, and the solution was stirred overnight at 25 °C. The bromoketalderived Grignard solution and trans-PdCl₂(PPh₃)₂ (50 mg, 0.071 mmol) were added to the carborane solution via cannula. The resulting reaction mixture was refluxed under nitrogen for 3 days. The reaction mixture was quenched with HCl(aq) 10% (100 mL), the organic phase was separated, and the aqueous layer was extracted with diethyl ether (2 \times 100 mL). The organic phases were combined and dried over anhydrous MgSO4. The MgSO4 was separated, and the solvent was removed under reduced pressure to yield 1 as a red solid. and the solvent was reinoved induced plessure to yield 1 as a red solution. The crude product was recrystallized from acetone to yield 1 as a red solution of the product was recrystallized from acetone to yield a white solid (4.43 g, 54%) mp 252 °C (sealed capillary). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.87$ and 7.29 (d 4H, C₆H₄), $\delta = 3.50$ (br s, 2 CH carborane), $\delta = 2.58$ (s 3H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): $\delta = 190.5$ (C₆H₄COCH₃), $\delta = 135.9$, 133.0 and 127.0 (C₆H₄COCH₃), $\delta = 50.1$ (CH_{carborane}), $\delta = 26.6$ (C₆H₄COCH₃), $\delta = -8.83$ (d, 2B, BH), $\delta = -13.58$ (d, 4B, BH), $\delta = -15.86$ (d 4D, BU), $\delta = -15.86$ (d, 2B, BH); MS (EI): For C₁₈B₁₀H₂₄O₂ calcd 380.2779, found 380.2781; IR (KBr pellet, $\nu \text{ cm}^{-1}$): $\nu_{\text{CH}(\text{carborane})}$ 3070, 3044; ν_{BH} 2601, 2592, 2560, $\nu_{\text{C=O}}$ 1660

⁽¹⁴⁾ Li, J.; Logan, C. F.; Jones, M. *Inorg. Chem.* **1991**, *30*, 4866–4868.
(15) Zheng, Z.; Jiang, W.; Zinn, A. A.; Knobler, C. B.; Hawthorne, M. F. *Inorg. Chem.* **1995**, *34*, 2095–2100.
(16) Crystal data for **1** at 25 °C: C₁₈B₁₀H₂₄O₂, colorless crystal, monoclinic,

⁽¹⁶⁾ Crystal data for 1 at 25 °C: $C_{18}B_{10}H_{24}O_2$, colorless crystal, monoclinic, $P2_1/c$, a = 11.749(10) Å, b = 13.204(12) Å, c = 13.815(11) Å, $b = 101.71-(3)^\circ$, V = 2098 Å³, Z = 4, $R_1 = 8.1$, $R_w = 10.1$, GOF = 2.88 for 1792 reflections ($I > 3 \sigma$ (I)).

energy¹⁷ is consistent with the X-ray structure and the conclusion that only the one C-H of C(1) is significantly involved in hydrogen bonding.

In the present example of a carborane species involved in intermolecular hydrogen bonding via the carborane C-H, the use of a chelating ligand or a donor solvent molecule to orient the solid-state structure was not required. The highly ordered structure of **1** strongly suggests the participation of the isomeric carborane moieties in self-assembly processes involving more complex molecules which result in applications to catalysis and biological systems.¹⁸ We are currently continuing our investigation of boron-substituted carborane derivatives using an array of other functional groups which will provide a route to highly functionalized carboranes,19 mercuracarborands,20-22 carborods,23

(19) Jiang, W.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 2536-2537.

and carboracycles²⁴ with novel solution and solid-state properties.

Acknowledgment. We are grateful to the National Science Foundation (Grant No. CHE-93-14037) for their support of the research. G.H. acknowledges the National Institutes of Health (Grant No. T32-NS-07356) for their support.

Supporting Information Available: Tables of position and thermal parameters, bond lengths, and crystallographic data and an ORTEP view of (1) (8 pages, print/PDF). See any current masthead page for ordering and Web access instructions.

JA9803411

⁽¹⁷⁾ Leites, L. A. Chem. Rev. 1992, 92, 279–323.
(18) Conn, M. M.; Rebek, J. J. Chem. Rev. 1997, 97, 1647–1668.

⁽²⁰⁾ Zheng, Z.; Yang, X.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. **1993**, *115*, 5320–5321.

⁽²¹⁾ Zheng, Z.; Knobler, C. B.; Mortimer, M. D.; Kong, G.; Hawthorne,

⁽²¹⁾ Zheng, Z.; Knöbler, C. B.; Mortimer, M. D.; Kong, G.; Hawthorne, M. F. *Inorg. Chem.* 1996, *35*, 1235–1243.
(22) Zinn, A. A.; Zheng, Z.; Knöbler, C. B.; Hawthorne, M. F. *J. Am. Chem. Soc.* 1996, *118*, 70–74.
(23) Jiang, W.; Harwell, D. E.; Mortimer, M. D.; Knöbler, C. B.; Hawthorne, M. F. *Inorg. Chem.* 1996, *35*, 4355–4359.
(24) Jiang, W.; Chizhevsky, I. T.; Mortimer, M. D.; Chen W. L.; Knöbler, C. B.; Johnson, S. E.; Gomez, F. A.; Hawthorne, M. F. *Inorg. Chem.* 1996, *35*, 5417–5426.